CHAPTER

13

FAULT TOLERANCE

131 INTRODUCTION

In the previous chapter, several techniques to recover from failures were discussed.
However, the disruptions caused during failures can be especially severe in many cases
(for example: on-line transaction processing, process control, and computer based com-
munication user communities, etc.) [14]. To avoid disruptions due to failures and to
improve availability, systems are designed to be fault-tolerant.

A system can be designed to be fault-tolerant in two ways [14]. A system may
mask failures or a system may exhibit a well defined failure behavior in the event of
failure. When a system is designed to mask failures, it continues to perform its specified
function in the event of a failure. A system designed for well defined behavior may
or may not perform the specified function in the event of a failure, however, it can
facilitate actions' suitable for recovery. An example of well defined behavior during a
failure is: the changes made to a database by a transaction are made visible to other
transactions only if the transaction successfully commits; if the transaction fails, the
changes made to the database by the failed transaction are not made visible to the other
transactions, thus not affecting those transactions. '

One key approach used to tolerate failures is redundancy. In this approach, a
system may employ a multiple number of processes, a multiple number of hardware
components, multiple copies of data, etc., each with independent failure modes (i.e.,
failure of one component does not affect the operation of other components).

In this chapter, we discuss widely used techniques, such as commit protocols
and voting protocols, used in the design of fault-tolerant systems. Commit protocols

330

FAULT TOLERANCE 331

¢ in the event of failure, such as the one described in
Is, on the other hand, mask failures in @ system. To

implement a fault-tolerant distributed system, processes in the system should be able
to tolerate system failures and communicate reliably. We describe two techniques that
have been used to implement processes that are resilient to system failures. In addition,
we describe a technique to send messages reliably among processes. Finally, we close

this chapter by presenting a case study .of a fault-tolerant system.

~ implement well defined behavio
the above example. Voting protoco

132 ISSUES
ystém must behave in a specified manner in the event of a failure,

Since a fault-tolerant s

it is important to study the implications of certain types of failures.

PROCESS DEATHS. When a process dies, it is important that the resources allocated
tly lost. Many distributed

to that process arc recouped, otherwise they may be permanen
systems are structured along the client-server model in which a client requests 2 service
by sending 2 message 1o a s€ cessary that the client

rver. If the server process fails, it is ne

machine be informed so that the client process, waiting for a reply can be unblocked
to take suitable action. Likewise, if a client process dies after sending a request to a
server, it is imperative that the server be informed that the client process 1o longer
exists. This will facilitate the server in reclaiming any resources it has allocated to the
client process.

MACHINE FAILURE. In the case of machine failure, all the processes running at
the machine will die. As far as the behavior of a client process Or @ Server process is
concerned, there is not much difference in their behavior in the event of a machine
failure or a process death. The only difference lies in how the failure 18 detected. In

- the case of a process death, other processes including the kernel remain active. Hence,
a message stating that-the process has died can be sent to an inquiring process. On
jther process death or a

the other hand, an absence of any kind of message indicates €

failure due to machine failure.

NETWORK FAILURE. A communication link failure can partition a network into
subnets, making it impossible for a machine to communicate with another machine in
a different subnet. A process cannot really tell the difference between 2 machine and a
communication link failure, unless the underlying communication network (such as a

slotted ring network) can recognize a machine failure. If the communication network
t return a suitable error code (such as

cannot recognize machine failures and thus canno
e to assume that a machine may be operating

Ethernet), a fault-tolerant design will hav
and processes on that machine are active.

S AND COMMITTING

the sequence of primitive 0
struction, which is indivis

133 ATOMIC ACTION
ctivity is governed by
ally, a machine level in

¢ atomic operations

Typically, system &
ible, instantaneous,

it is executing. Usu

332 ADVANCED CONCEPTS IN OPERATING SYSTEMS

and cannot be interrupted (unless the system fails) corresponds to an atomic operation.
However, it is desirable to be able to group such instructions that accomplish a certain
task and make the group an atomic operation.

For example, suppose two processes P; and P, share a memory location X and
both modify X as shown in Fig. 13.1. Suppose P; succeeds in locking X before P,
then P; updates X and releases the lock, making it possible for P;,to access X. If Py
fails after P, has seen the changes made to X by Py, then P, will also have to be
aborted or rolled back. Thus, what is necessary is that P, should not be able to interact
with P, through X until it can do so safely. In other words, F; should be atomic. Its
effect on X should not be visible to P or any other process until P, is guaranteed to
finish. In essence, the effect of P; on the system (even though it executes concurrently
with P) should look like an undivided and uninterrupted operation.

Atomic actions extend the concept of atomicity from one machine instruction
level to a sequence of instructions or a group of processes that are themselves to be
executed atomically. Atomic actions are the basic building blocks in constructing fauit-
tolerant operations. They provide a means to a system designer to specify the process
interactions that are to be prevented to maintain the integrity of the system. Atomic
actions have the following characteristics [29, 39].

e An action is atomic if the process performing it is not aware of the existence of any
other active processes, and no other process is aware of the activity of the process
during the time the process performs the action.

e An action is atomic if the process performing it does not communicate with other
processes while the action is being performed.

e An action is atomic if the process performing it can detect no state changes except
those performed by itself, and if it does not reveal its state changes until the action
is complete. ‘

e Actions are atomic if they can be considered, so far as other processes are concerned,
to be indivisible and instantaneous, such that the effects on the system are as if they
were interleaved as opposed to concurrent.

A transaction groups a sequence of actions (for example, on a database) and
the group is treated as an atomic action to maintain the consistency of a database.
(The concept of a transaction is discussed in Sec. 19.2.1.) At some point during its

Process P; Process P,

Lock(X); . Lock(X);
X =X4+7Z ‘ X =X4Y,
Unlock(X); Unlock(X);

FIGURE 13.1

failure Process interaction.

FAULT TOLERANCE 333

execution, the transaction decides whether to commit or abort its actions. A commit is
an unconditional guarantee (even in the case of multiple failures) that the transaction
will be completed. In other words, the effects of its actions on the database will be
permanent. An abort is an unconditional guarantee to back out of the transaction, and
none of the effects of its actions will persist [44].

A transaction may abort due to any of the following events: deadlocks, timeouts,
protection violation, wrong input provided by user, or consistency violations (which
can happen if an optimistic concurrency control technique is employed). To facili-
tate backing out of an aborting transaction, the write-ahead-log protocol (discussed in
Sec. 12.5.1) or shadow pages (discussed in Sec. 12.5.1) can be employed.

In distributed systems, several processes may coordinate to perform a task. Their
actions may have to be atomic with respect to other processes. For example, transaction
may spawn many processes that are executed at different sites. As another example, in
distributed database systems, a transaction must be processed at every site or at none of
the sites to maintain the integrity of the database. This is referred to as global atomicity.
The protocols that enforce global atomicity are referred to as commit protocols. Given
that each site has a recovery strategy (e.g., the write-ahead-log protocol or the shadow
page protocol) at the local level, commit protocols ensure that all the sites either commit
or abort the transaction unanimously, even in the presence of multiple and repetitive
failures [44]. Note that commit protocols fall into the second class of fault-tolerant
design techniques in that they help the system behave in a certain way in the presence
of failures. We next present several commit protocols.

13.4 COMMIT PROTOCOLS

The following situation illustrates the difficulties that arise in the design of commit
protocols [20].

THE GENERALS PARADOX. There are two generals of the same army who have
encamped a short distance apart. Their objective is to capture a hill, which is possible
only if they attack simultaneously. If only one general attacks, he will be defeated.
The two generals can communicate only by sending messengers. There is a chance that
these messengers might lose their way or be captured by the enemy. The challenge is
to use a protocol that allows the generals to agree on a time to attack, even though
some messengers do not get through. :

A simple proof shows that there exists no protocol which sends the messengers
a fixed number of times to solve the above problem. Let P be the shortest protocol.
Suppose the last messenger in P does not make it to the destination. Then either the
message carried by the messenger is useless or one of the generals does not get the
needed message. Since P is the minimal length protocol by our assumption, the message
that was lost was not a useless message and hence one of the generals will not attack.
This contradiction proves that there exists no such protocol P of fixed length.

The situation faced by the generals is very similar to the situation that arises in
the commit protocols. The goal of commit protocols is to have all the sites (generals)
agree either to commit (attack) or to abort (do not attack) a transaction. By relaxing the

7 334 ADVANCED CONCEPTS IN OPERATING SYSTEMS

requirement that the number of messages employed by a commit protocol be bounded
by a fixed number of messages, a commit protocol can be designed. We next describe
a famous protocol by Gray [20], which has been referred to as the two-phase commit
protocol.

13.4.1 The Two-Phase Commit Protocol

This protocol assumes that one of the cooperating processes acts as a coordinator. Other
processes are referred to as cohorts. (Cohorts are assumed to be executing at different
sites.) This protocol assumes that a stable storage is available at each site and the write-
ahead log protocol is active. At the beginning of the transaction, the coordinator sends
a start transaction message to every cohort.

Phase 1. At the coordinator:

1. The coordinator sends a COMMIT-REQUEST message to every cohort requesting
the cohorts to commit.

2. The coordinator waits for replies from all the cohorts.
At cohorts:

1. On receiving the COMMIT-REQUEST message, a cohort takes the following ac-
tions. If the transaction executing at the cohort is successful, it writes UNDO and
REDO log on the stable storage and sends an AGREED message to the coordinator.
Otherwise, it sends an ABORT message to the coordinator.

Phase IL. Af the coordinator:

1. If all the cohorts reply AGREED and the coordinator also agrees, then the coordi-
"nator writes 2 COMMIT record into the log. Then it sends a COMMIT message
to all the cohorts. Otherwise, the coordinator sends an ABORT message to all the
cohorts.
2. The coordinator then waits for acknowledgments from each cohort.
3. If an acknowledgment is not received from any cohort within a timeout period, the
coordinator resends the commit/abort message to that cohort.

4. If all the acknowledgments are received, the coordinator writes a COMPLETE
record to the log (to indicate the completion of the transaction).

At cohorts:

1. On receiving a COMMIT message, a cohort releases all the resources and locks
held by it for executing the transaction, and sends an acknowledgment.

2. On receiving an ABORT message, a cohort undoes the transaction using the UNDO
log record, releases all the resources and locks held by it for performing the trans-
action, and sends an acknowledgment.

FAULT TOLERANCE 335

When there are no failures or message losses, it is easy to see that all sites will
commit only when all the participants (including the coordinator) agree to commit. In
the case of lost messages (sent from either cohorts or the coordinator), the coordinator
simply resends messages after the timeout. Now we shall attempt to show that this
protocol results in all participants either committing or aborting, even in the case of

site failures. .
SITE FAILURES. For site failures, we look at the following cases:

e Suppose the coordinator crashes before having written the COMMIT record. On
recovery, the coordinator broadcasts an ABORT message to all the cohorts. All
the cohorts who had agreed to commit will simply undo the transaction using the
UNDO log and abort. Other cohorts will simply abort the transaction. Note that all
the cohorts are blocked until they receive an ABORT message.

e Suppose the coordinator crashes after writing the COMMIT record but before writ-
ing the COMPLETE record. On recovery, the coordinator broadcasts a COMMIT
message to all the cohorts and waits for acknowledgments. In this case also the
cohorts are blocked until they receive a COMMIT message.

e Suppose the coordinator crashes after writing the COMPLETE record. On recovery,
there is nothing to be done for the transaction.

o If a cohort crashes in Phase I, the coordinator can abort the transaction because it
did not receive a reply from the crashed cohort.

e Suppose a cohort crashes in Phase II, that is, after writing its UNDO and REDO
log. On recovery, the cohort will check with the coordinator whether to abort (ie.,

~ perform an undo operation) or to commit the transaction. Note that committing may
require a redo operation because the cohort may have failed before updating the
database.

While the two-phase commit protocol guarantees global atomicity, its biggest
drawback is that it is a blocking protocol. Whenever the coordinator fails, cohort sites
will have to wait for its recovery (see Problem 13.1). This is undesirable as these
sites may be holding locks on the resources. (Note that transactions lock the resources
to maintain the integrity of resources. See Chap. 20.) In the event of message loss,
the two-phase protocol will result in the sending of more messages. We next discuss
nonblocking commit protocols that do not block in the event of site failures.

135 NONBLOCKING COMMIT PROTOCOLS

If transactions must be resilient’ to site failures, the commit protocols must not block in
- the event of site failures. To ensure that commit protocols are nonblocking in the event

TPro gress despite failures.

336 ADVANCED CONCEPTS IN OPERATING SYSTEMS

of site failures, operational sites should agree on the outcome of the transaction (while
guaranteeing global atomicity) by examining their local states. In addition, the failed
sites, upon recovery must all reach the same conclusion regarding the outcome (abort
or commit) of the transaction. This decision must be consistent with the final outcome
at the sites that were operational. If the recovering sites can decide the final outcome of
the transaction based solely on their local state (without contacting the sites that were
operational), the recovery is referred to as independent recovery [44]. Skeen [43, 44]
proposed nonblocking commit protocols that tolerate site failures. Before describing a
nonblocking protocol, it is first necessary to discuss the conditions that cause a commit
protocol to block and then discuss how a failed site can recover to an appropriate state.

ASSUMPTIONS. The communication network is assumed to have the following char-
acteristics:

e The network is reliable and point-to-point communication is possible between any
two operational sites.

e The network can detect the failure of a site (for example by a timeout) and report
it to the site trying to communicate with the failed site.

DEFINITIONS

Synchroneus protocols. A protocol is said to be synchronous within one state transition
if one site never leads another site by more than one state transition during the execution
of the protocol. In other words, Vi, 7,| t; —t; |<1, where 1 < 4,4 < n,n is the total
number of sites, and ¢;, is the total number of state transitions that have occurred thus far
at site k. A state transition (change in the state) occurs in a process participating in the
two-phase commit protocol whenever it receives and/or sends messages (see Fig. 13.2).
With the help of a finite state automaton (FSA), we will see that the two-phase commit
protocol satisfies the above definition (see Fig. 13.2).

Whenever the coordinator is in state ¢, all the cohorts are also in state g. When
the coordinator is in state w, a cohort can either be in state ¢, w, or a, which is at most
one state transition behind or ahead of the coordinator’s state in the FSA. When the
coordinator is in state a/c, a cohort is in state w or a/c depending on whether it has
received a message (Abort/Commit) from the coordinator.

Likewise, whenever a cohort is in state ¢: some cohorts may be in state w/q if
they have or have not received the Commit Request message yet; and some cohorts
may be in state a depending on whether a cohort has received an Abort message or
not. Whenever a cohort is in state a/c, other cohorts may be in state a or ¢, depending
on whether they have received an Abort or Commit message, respectively; otherwise,
they are in state w. Note that a site is never in state ¢ when another site is in state g,
which means that a site never leads another site by two or more state transitions.

Concurrency set. Let s; denote the state of site 5. The set of all the states of every
site that may be concurrent with it is known as the concurrency set of s; (denoted by
C(s;)). For example, consider a system having two sites. If site 2’s state is w,, then

FAULT TOLERANCE 337

Coordinator

Commit_Request msg
sent to all cohorts

All cohorts
agreed

Send Commit msg
to all cohorts

One or more cohort(s)
replied abort

Abort msg sent
to all cohorts

(2)

Cobort i (i=2,3,..., 1) .

Commit_Request
msg received

Abort msg sent
to Coordinator

Commit_Request
msg received

Agreed msg sent
to Coordinator

Abort msg received
from Coordinator

Commit msg received
from Coordinator

FIGURE 13.2

Finite state automata illustrating the

2-phase commit protocol (adapted ‘
(b) from [43]).

C(w,) = {c1, a1, w1 }. Likewise, C(q2) = {g1,w:}. Note that, ar,c1 ¢ C(qz) because
the two-phase commit protocol is synchronous within one state transition.

Sender set. Let s be an arbitrary state of a site, and let M be the set of all messages
‘ that are received in state s. The sender set for s, denoted by S(s), is

{i | siteisendsmandm € M}

338 ADVANCED CONCEPTS IN OPERATING SYSTEMS

13.5.1 Basic Idea

We first consider the simple case where at most one site fails during a transaction
execution. We begin by describing the conditions that cause blocking in two-phase
commit protocols. We then discuss how to overcome them. Next, we explain how a
decision regarding the final outcome of the transaction is made at a site that is recovering
after failure. Finally, we describe how operational sites deal with a site failure.

CONDITIONS THAT CAUSE BLOCKING. We now present some observations that

‘lead to the conditions under which the two-phase commit protocol blocks [44]. Consider

a simple case where only one site remains operational and all other sites have failed.
This site has to proceed based solely on its local state. Let s denote the state of the site
at this point. If C(s) contains both commit and abort states, then the site cannot decide
to abort the transaction because some other site may be in the commit state. On the
other hand, the site cannot decide to commit the transaction because some other site
may be in the abort state. In other words, the site has to block until all the failed sites
recover. The above observation leads to the following lemma [44]:

Lemma 13.1. If a protocol contains a local state of a site with both abort and commit
states in its concurrency set, then under independent recovery conditions it is not resilient
to an arbitrary single failure.

HOW TO ELIMINATE BLOCKING. We now address the question of how to mod-
ify the two-phase commit protocol to' make it a nonblocking protocol. Notice that in
Fig. 13.2, only states w; (i # 1) have both abort and commit states in their concur-
rency sets. To make the two-phase commit protocol a nonblocking protocol, we need
to make sure that C'(w;) does not contain both abort and commit states. This can be
done by introducing a buffer state p in the finite state automaton of Fig. 13.2(a). We
also introduce a buffer state p; for the cohorts. (The reason for adding p;, i1 will
become clear later.) The resulting finite state automata are shown in Fig. 13.3. Now, in
a system containing only two sites, C(wy) = {q, w2, 02}, and C(wy) = {a1,p1, w1}

This extended two-phase commit protocol is nonblocking in case of a single site
failure and a failed site.can perform independent recovery. Independent recovery 18 pos-
sible mainly because a site can make unilateral decisions regarding the global outcome
of a transaction. Also, when a site fails, other sites can make decisions regarding the
global outcome of the transaction based on their local states.

FAILURE TRANSITIONS. In order to perform independent recovery at a failed site,
the failed site should be able to reach a final decision based solely on its local state.
The decision making process is modeled in the FSA using failure transitions. A failure
(ransition occurs at a failed site at the instant it fails (or immediately after it recovers
from the failure). The local state resulting due to the state change caused by the failure
transition will initially be occupied by the site upon recovery. The failure transitions
are performed according to the following rule [44].

FAULT TOLERANCE 339

Coordinator

Commit_Request msg
sent to all cohorts

All cohoxts
agreed

Send Prepare msg
to all cohorts

Oue or more cohort(s)
replied abort

Abort msg sent
to all cohorts

All cohorts sent
Ack msg ,

Cohort i (i=2,3,.,1) W
end Commit msg
to all cohorts

Commit_Request
msg received

Abort msg sent
to Coordinator

Commit_Request
msg received

_Abe T
Agreed msg sent
to Coordinator

Abort msg received
from Coordinator

Prepare msg
received

bttt
Send Ack msg
to coordinator

Commit msg received
from Coordinator

(®)

FIGURE 13.3

Finite state automata illu apted from Skeen [441).

strating 3-phase commit protocol (ad

340 ADVANCED CONCEPTS IN OPERATING SYSTEMS

Rule 1. For every nonfinal state s (i.e., s, w;, p;) in the protocol: if C(s) contains a
commit, then assign a failure transition from s to a commit state in its FSA; otherwise,
assign a failure transition from s to an abort state in its FSA.

The intuition behind this rule is straightforward. Note that, p; (3 # 1) is the only
state which has a commit state in its concurrency set. When site ¢ is in state p;, all
. the sites including ¢ have agreed to commit. Thus, if site 7 fails in state p; (recall our
assumption that only one site fails during a transaction execution), there is no problem
if it commits the transaction on recovery. On the other hand, all states other than p;
have the abort state in their concurrency sets. Hence, if a site fails in any state other
than p; and ¢;, then it is not safe for the failed site to recover and commit the transaction
unilaterally. Therefore, the failed site on recovery aborts the transaction.

Figure 13.4 illustrates the FSA resulting from the failure and timeout transitions.

TIMEOUT TRANSITIONS. We now consider what an operational site does in the
event of another site’s failure. If site 4 is waiting for a message from site j (i.e., j € S(%))
and site j has failed, then site ¢ times out. Based on the type of message expected from
4, we can determine in what state site j failed. Once the state of j is known, we can
determine the final state of j due to the failure transition at 4. This observation leads
to the timeout transitions in the commit protocol at the operational sites [44].

Rule 2. For each nonfinal state s, if site j is in S(s), and site j has a failure transition to
a commit(abort) state, then assign a timeout transition from state s to a commit (abort)
state in the FSA.

The rationale behind this rule is as follows. The failed site makes a transition
to a commit (abort) state using the failure transition (Rule 1). Therefore, operational
sites must make the same transition in order to ensure that the final outcome of the
transaction is identical at all the sites. Figure 13.4 illustrates the FSA resulting from
the timeout transitions.

13.5.2 The Nonblocking Commit Protocol for Single Site Failure

Tt is assumed that each site uses the write-ahead-log protocol. It is also assumed that, at
most, one site can fail during the execution of the transaction. The following protocol
is a modified version of the protocol proposed by Skeen and Stonebraker [44].

Before the commit protocol begins, all the sites are in state g. If the coordinator
fails while in state gy, all the cohorts timeout, waiting for the Commit_Request message,
and they perform the timeout transition, thus aborting the transaction. Upon recovery,
the coordinator performs the failure transition from state g, also aborting the transaction.

THE PROTOCOL

Phase 1. The first phase of the nonblocking protocol is identical to that of the two-
~ phase commit protocol (see Sec. 13.4.1) except in the event of a site’s failure. During
the first phase, the coordinator is in state wi, and each cohort is either in state a (in
which case the site has already sent an Abort message to the coordinator) or w or ¢

FAULT TOLERANCE

Coordinator

Commit_Request msg
sent to all cohorts

All cohorts
agreed

Send Prepare msg
to all cohorts

One or more cohort(s)
replied abort

Abort msg sent
to all cohorts

Abort msg sent
to all cohorts

All cohorts sent
Ack msg

Send Commit msg
to all cohorts

Commit_Request (a)
msg received

Abort msg sent
to Coordinator

Commit_Request
msg received

Agreed msg sent
to Coordinator

Abort msg received
from Coordinator

Prepare msg
received

Send Ack msg S ,\\rz;\o& T . .
to coordinator & e Timeout Transition

S . F

"""""""""" - Failure Transition
FT Failure/Ti Transiti
. TE Commit msg received e - ailure/Timeout Transition
v from Coordinator
(b)

FIGURE 13.4
Finite state automata illustrating timeout and failure transitions (adapted from Skeen [44]).

342 ADVANCED CONCEPTS IN OPERATING SYSTEMS

depending on whether it has received the Commit Request message or not. If a cohort
fails, the coordinator times out waiting for the Agreed message from the failed cohort.
In this case, the coordinator aborts the transaction and sends abort messages to all the

cohorts,

Phase II. In the second phase, the coordinator sends a Prepare message to all the cohorts
if all the cohorts have sent Agreed messages in phase I. Otherwise, the coordinator will
send an Abort message to all the cohorts. On receiving a Prepare message, a cohort
sends an acknowledge message to the cohort. If the coordinator fails before sending
Prepare messages (i.e., in state wy), it aborts the transaction upon recovery, according
to the failure transition. The cohorts time out waiting for the prepare message, and also
abort the transaction as per the timeout transition.

Phase III. In the third phase, on receiving acknowledgments to the Prepare messages
from all the cohorts, the coordinator sends a Commit message to all the cohorts. A
cohort, on receiving a Commit message, commits the transaction. If the coordinator
fails before sending the Commit message (i.e., in state pi), it commits the transaction
upon recovery, according to the failure transition from state p;. The cohorts time out
waiting for the Commit message. They commit the transaction according to the timeout
transition from state p;. However, if a cohort fails before sending an acknowledgment
message to a Prepare message, the coordinator times out in state p;. The coordinator
aborts the transaction and sends -Abort messages to all the cohorts. The failed co-
hort, upon recovery, will abort the transaction according to the failure transition from
state w;.

Now, to clarify why state p; was added to the FSA of cohorts (see Fig. 13.4),
consider a system with three sites. Suppose the state p; is not present. Under this case,
if the coordinator is in state p; waiting for an acknowledgment message. Let cohort 2
(in state w,) acknowledge and commit the transaction. Suppose cohort 3 (in state ws)
fails, then both the coordinator and cohort 3 (upon recovery as per the failure transition)
will abort the transaction, thus, causing an inconsistent outcome for the transaction. By
adding state p; (i # 1), we ensure that no state has both abort and commit states in its
concurrency set.

CORRECTNESS

Theorem 13.1. Rules 1 and 2 are sufficient for designing commit protocols resilient
to a single site failure during a transaction [44].

Proof. The proof is by contradiction. Let P be a protocol that abides by Rules 1 and
2. Assume that protocol P is not resilient to all single site failures. Also, assume that
the system has only two sites. Without loss of generality, let site 1 fail in state 1, and
let site 2 be in state s, when site 1 fails. Let site 1 make a failure transition to state
f1, and let site 2 make a timeout transition to state f». Suppose that the global state
of the system, wherein site 1 is in state fi and site 2 is in state fz, is inconsistent.
Depending on whether s; is a final state (abort/commit) or a nonfinal state (all states
other than abort and commit), we have the following two cases:

FAULT TOLERANCE 343

Case 1. s, is a final state. This implies that f, € C(s;). If f, is a commit(abort)
state, and f; is an abort(commit) state, then Rule 1 has been violated.

Case 2. s; is a nonfinal state. By the definition of the commit protocol, site 1
belongs to the sender set S(s) of site 2. Hence, if £, is a commit(abort) state, and f
is an abort(commit) state, then Rule 2 has been violated.

13.5.3 Multiple Site Failures and Network Partitioning

We now discuss independent recovery under multiple site failures and network parti-
tioning. We state the results by Skeen and Stonebraker [44] without giving the proof.

Note that a protocol is resilient to a given condition only if it is nonblocking under that
condition.

Theorem 13.2. There exists no protocol using independent recovery that is resilient
to arbitrary failures by two sites.

Theorem 13.3. There exists no protocol resilient to network partitioning when mes-
sages are lost.

Theorem 13.4. There exists no protocol resilient to multiple network partitionings.

13.6 VOTING PROTOCOLS

A common approach to provide fault tolerance in distributed systems is by replicating
data at many sites. If a site is not available, the.data can still be obtained from copies at
other sites. Commit protocols can be employed to update multiple copies of data. While
the nonblocking protocol of the previous section can tolerate single site failures, it is not
resilient to multiple site failures, communication failures, and network partitioning. In
commit protocols, when a site is unreachable, the coordinator sends messages repeatedly
and eventually may decide to abort the transaction, thereby denying access to data.
However, it is desirable that the sites continue to operate even when other sites have
crashed, or at least one partition should continue to operate after the system has been
partitioned. Another well known technique used to manage replicatéd data is the voting
mechanism. With the voting mechanism, each replica is assigned some number of
votes, and a majority of votes must be collected from a process before it can access
a replica. The voting mechanism is more fault-tolerant than a commit protocol in that
it allows access to data under network partitions, site failures, and message losses
without compromising the integrity of the data. We next describe static and dynamic
voting mechanisms.

13.6.1 Static Voting
The static voting scheme is proposed by Gifford [19].

System model. The replicas of files are stored at different sites. Every file access
operation requires that an appropriate lock is obtained. The lock granting rules allow

